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Abstract

This paper deals with an inverse problem which consists in the location identi®cation of multiple-line heat sources

placed in an homogeneous solid in the stationary case. The location and strength of the line heat sources are unknown.

The identi®cation procedure is based on the boundary integral formulation using Green functions. The discretized

problem is non-linear if the location of the line heat sources is unknown. In order to solve the problem we use an

iterative procedure to minimize a quadratic norm. The proposed numerical approach is applied to an experimental 2D

example using measurements provided by an infrared scanner. The number of line heat sources is supposed to be known

but we give some examples involving a number of sources superior or inferior to the real number. Ó 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

In this paper we propose an original method to cope

with multiple-point heat sources identi®cation when

both intensity and location are unknown. As in the

fundamental partial di�erential equation governing the

heat transfer phenomena, the heat source generation is

unknown, the problem is inverse and some additional

information (measurements) are necessary to solve the

problem.

In previous studies we have proposed a method to

cope with this type of an inverse problem. In [1] we

propose the Boundary Element Method (BEM) ap-

proach for point heat sources strength identi®cation in

di�usive systems when the location of the sources is

known. The other authors working on the subject pro-

pose di�erent methods such as adjoint method [2] or

®nite elements [3]. For all the proposed methods the

location of the point heat sources is known, in [4] we

propose an iterative algorithm for the case of a single

source in a transient case.

In this paper we propose an iterative procedure for

multiple heat source location in a di�usive system for the

steady case. The formulation is based on a ®rst-order

approximation of the Green function used for BEM

formulation. An iterative algorithm is built to minimize

a cost function combining the boundary variables,

measured or prescribed, and the modellized heat source

contribution using a Green function [5].

The proposed method, valid for multiple sources

identi®cation, is applied on an academic experiment

using infrared thermography. The aim is to avoid in-

trusive measurements but some thermocouples could be

used. The experiment rather similar to the one presented

in [4] is composed of a long square bar crossed by six

heating wires, the aim is to identify the location and the

strength of each activated wire without any a priori in-

formation. Some examples are proposed when the

number of activated sources is unknown. The proposed

inverse problem is ill posed in the sense of Hadamard [6]

because the solution is not unique and as shown in the

previous studies the strength of the source identi®cation

is highly sensitive to measurement errors. A simple

regularization procedure is proposed in order to identify

the strengths correctly.
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This paper is divided into two parts, the ®rst one

describes in detail the method used for the inverse

problem resolution. We detail successively the BEM

formulation for steady state conduction and the pro-

posed inverse method. The second part describes the

experiment and the results obtained in various con-

ditions: one, two and four sources identi®cation.

2. The point heat source identi®cation

In this part of the paper we describe the BEM ap-

proach applied to the heat di�usion equation in the

steady case. BEM is applied here in the sense of the point

sources identi®cation in the stationary case. The second

part is related to the iterative algorithm used to identify

the location of the sources.

2.1. The boundary element formulation for point heat

sources location

The inverse method presented here is based on BEM

and is already presented and detailed in [1] for point heat

sources strength reconstruction. As it is pointed out in

[1] the discretized boundary elements equations are not

linear if the location of the heat sources is unknown. An

iterative method is proposed in this section. In our

problem the number of sources is supposed to be

known.

2.1.1. The boundary integral equation

In terms of temperatures h, the linear steady heat

di�usion equation can be written:

~r2h� g
k
� 0; �1�

where g is the heat source term, h the temperature and k
is the heat conductivity.

Considering point M, of domain X of boundary C,

integrating twice Eq. (1) weighted by a fundamental

solution T � [7], leads to the Boundary Integral Equation

(BIE) for the linear stationary heat conduction. The

linear BIE can be written:

chM �
Z

C
hq� dC �

Z
C

p
k

T � dC�
Z

X

g
k

T � dX; �2�

where M is a point of C or X, p the heat ¯ux density, T �

the fundamental solution, q� the normal derivative of T �

and c a coe�cient which depends on the position of M,

namely c � 1, if M is in X and c < 1, if M is on C (e.g.

c � 0:5 if C is smooth at M).

For non-linear thermal di�usion, the BIE formula-

tion is possible using the Kircho� transform [5] of the

temperature as described in [7] and applied in [1]. The

Nomenclature

A linear system matrix

B second member vector

c multiplying coe�cient

C diagonal matrix

d distance from the line heat source (mm)

g heat source term (W mÿ3)

g line heat source strength (W mÿ1)

h heat transfer coe�cient (W mÿ2 Kÿ1)

H, G matrices of stationary BIE

I matrix for point source treatment

K number of point sources

n normal to the surface

N boundary elements number

N 0 internal points number

p heat ¯ux density (W mÿ2)

P heat ¯ux densities vector

q� normal derivative of T �

S source terms vector

t time (s)

T temperatures vector

T � fundamental solution

U solution vector

x; y; z Cartesian co-ordinates

X x co-ordinates vector

Y y co-ordinates vector

Greek symbols

d Dirac function

e emissivity

C boundary of the di�usive domain

k conductivity (W mÿ1 Kÿ1)

u measured heat ¯ux density (W mÿ2)

h temperature in Celsius (°C)

H vector of the heat sources contribution

r standard deviation

X di�usive domain

Subscripts

k point source index

1 ambient conditions

c convection

Superscripts
0 internal points

l iteration number

^ least squares solution

� approximated heat source contribution

Abbreviation

BEM Boundary Element Method

BIE Boundary Integral Equation
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fundamental solution T � is a space-dependent Green

function [5] which permits to cope with localized

measurements (internal points) and singularities as point

heat sources. The function T � used to obtain Eq. (2) is a

solution of

DT � � dM � 0; �3�
where dM is the Dirac function at point M of domain X.

T � is a Green function [5] which represents the response

to a point heat source in an in®nite domain, thus T � can

be written:

in 2D T � � 1

2p
ln

1

r

� �
; �4�

and in 3D T � � 1

4p
1

r
; �5�

where, in both cases, r is the distance between the cur-

rent node and the point M of domain X. T � is then the

sensitivity coe�cient to a strength variation of a point

heat source placed at point M.

BIE (2) lets appear a volume integral related to heat

source term g. In order to transform this volume integral

into a discrete form without complete domain mesh, let

us consider g as a set of K point heat sources as shown in

[1,7].

Considering a set of line heat sources in a 2D di�u-

sive system, by applying the explicit form of T � the heat

source term in BIE (3) can be writtenZ
X

g
k

T � dX � 1

k

XK

k�1

gk
1

2p
ln

1

rk

� �

� 1

k
ÿ1

4p

XK

k�1

gk ln �xM

��
ÿ xk�2 � �yM ÿ yk�2

��
;

�6�
where gk is the algebraic strength of source k, rk the

distance from considered point M to the source k, xk (xM )

and yk (yM ) the co-ordinates of line source k (point M).

The 3D case can be treated in a similar way, the

problem in this case is to build a simple experiment with

a point source in a 3D system.

2.1.2. The discrete formulation

It is important to notice that as it is mentioned in

[1,7] using (6) in (2) leads to a boundary integrals only

formulation. Thus to discretize domain X it is not

necessary to build a complete domain mesh, a boundary

discretization is su�cient to solve heat transfer Eq. (1).

As it is recommended in [7] and applied in [1], we use

elements constant over space. This last assumption

means that the temperatures and ¯ux densities are taken

to be constant on each element. Let us assume that the

boundary C is discretized in N boundary nodes Ci. As a

result, for an element Ci of the boundary we have

1

2
hi �

XN

j�1

hj

Z
Cj

q�dC

�
XN

j�1

pj

k

Z
Cj

T �dCÿ 1

4pk

XK

k�1

gk ln �xi

��
ÿxk�2��yiÿyk�2

��
;

�7�
where hi is the temperature at element Ci; pi the heat

¯ux density at element Ci; xk and yk the co-ordinates of

line source k, xi and yi the co-ordinates of node i. In the

latter equation we assume that the boundary is smooth

at node i of the boundary. The integrals on the bound-

ary elements Cj connect the ith node with the element Cj

over which the integral is evaluated. Introducing coe�-

cients Hi;j and Gi;j, results of the above-mentioned inte-

grals, we can build the following equation

1

2
hi �

XN

j�1

Hi;jhj �
XN

j�1

Gi;j

k
pj �

XK

k�1

Ii;k

k
gk : �8�

Coe�cients Hi;j and Gi;j can be found in [7] and cal-

culated analytically or numerically. Ii;k is speci®c to heat

source identi®cation. Compared to the previous coef-

®cients, coe�cient Ii;k is not the result of an integral but

the value of the fundamental solution at node i consid-

ering the line source k.

Eq. (8) written for all the boundary nodes can be

arranged in a matrix form and we obtain:

�C�H�T � GP � IS; �9�
where C is a diagonal matrix with 1/2 on the diagonal, H

and G �N ;N� dimension matrices of the coe�cients

Hi;j and Gi;j=k, T (P) the vector of temperatures (heat

¯ux densities) at the boundary, I a (N, K) dimension

matrix and S a (K) dimension vector containing the K

unknown line heat sources intensities.

BIE (2) can be written for an internal point M and a

discrete formulation using the above-mentioned as-

sumptions leads to a matrix form with matrices H0, G0

and I0 corresponding to the N0 internal points, ®nally we

obtain:

T 0 �H0T � G0P � I0S; �10�
where T 0 is the vector of the internal temperatures, H0

and G0 some matrices of (N0, N) dimension and I0 is a

matrix of (N0, K) dimension. As shown in [8,9] if the

temperature at the internal points is known, for example

a temperature measured by a thermocouple, system (9)

can be combined with system (10). At least we obtain the

®nal system

0

T 0

� �
� C�H

H0

� �
T � G

G

0" #
P � I

I0

� �
S

or
0

T 0

� �
� C�H

H0

� �
T ÿ G

G0

� �
P � I

I0

� �
S: �11�
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System (11) contains N � N 0 equations and

2N � 3K unknowns, namely N boundary temperatures,

N boundary heat ¯ux densities, K point heat sources

strengths and 2K co-ordinates (3K in a 3D system).

System (11) is used in the transient case [1] to identify

unknown line heat sources intensities contained in

vector S. In the present case, the location of point

heat sources is unknown and system (11) is then non-

linear.

If we have a set of boundary conditions, h known, p

known, p � f �h� or both p and h known, such as the

number of unknowns is inferior to N � N 0, the non-lin-

ear system (11) can be solved.

Let us introduce the vector H de®ned as the result of

the following matrix operation:

H �
0

T 0

" #
�

C�H

H0

" #
T ÿ

G

G0

" #
P

with
I

I0

" #
S � H �12�

H is an (N � N 0) dimension vector. Vector H represents

the contribution of the heat sources included in domain

X. System (12) gives the beginning of our approach

which consists in the comparison between the modelized

contribution of heat sources and the measurements in-

cluded in the right part of vector H.

The examples proposed in this paper consist in the

complete knowledge of the boundary variables T and P,

thus system (11) is reduced to the left-hand side equa-

tion. Nevertheless in most cases classical boundary

conditions, Neumann, Dirichlet, Fourier, are applied on

a portion of the boundary and matrix operation (12)

cannot be performed readily. Vector H is evaluated into

two steps. The ®rst one is the resolution of system (11)

using some prescribed co-ordinates and the second one

is the resolution of system (12) using an iterative pro-

cedure in order to ®nd out the location of the sources.

2.1.3. The point heat source intensity identi®cation

For the point heat source intensity identi®cation

procedure, we use the same approach as the one pre-

sented in [1] for the transient case. When a priori loca-

tion of the sources is known, it is possible to identify

vector S components if the set of boundary conditions

leads to a number of M unknowns (K sources and

M ÿ K boundary conditions) inferior to or equal to the

number of equations (N � N 0).
If we rearrange system (11) and combine the un-

knowns in a vector U, we obtain:

AU � B; �13�
where A is a matrix of dimension ((N � N 0), M), U a

vector of dimension (M) and B is a second member

vector of dimension (N � N 0). In the general case we

have more measurements than unknowns (N � N 0 > M)

and vector U has to minimize a cost function J(U) de-

®ned as:

J�U� � kAU ÿ Bk2
: �14�

In order to ®nd a solution to the inverse problem we

have to solve the following optimization problem:

Û � arg min�J�U��� �: �15�
If we apply the least squares method (in the case of an

Euclidean norm) to minimize function (14), this leads

to a vector Û solution in the sense of the least squares.

As a result Û is the solution of the simultaneous

equations:

�ATA�Û � ATB �16�

with the components of Û identi®ed using a least

squares minimization we obtain the complete knowledge

of the boundary variables h and p assembled in vectors T̂
and P̂ . The latter contain measurements and identi®ed

values. In vector Ŝ we ®nd the values of the heat sources

strength extracted from vector Û .

As shown by Beck et al. [10] the inverse heat con-

duction problem is ill posed considering the stability of

the solution to measurement errors. Thus the result of

system (16) can be unstable considering the measure-

ment errors and the heat sources location errors. In our

case it is not possible to use a space regularization

procedure because of the singular character of point

heat sources. Considering the reduced number of

sources and the a priori information that the strength is

positive, the identi®ed strength of each source is nor-

malized considering that a source cannot be negative

and that the sum of the sources is equal to the total

boundary heat ¯ux.

2.1.4. The cost function for location identi®cation

Using the least squares approach it is possible to

compare the space-dependent heat source contribution

vector and the boundary and internal measurement

vector such as de®ned in Eq. (12). Let us introduce two

vectors Ĥ and ~H, whose expressions are:

Ĥ � 0
T 0

� �
� C�H

H0

� �
T̂ ÿ G

G0

� �
P̂ �17�

and

~H � ~I
~I0

� �
Ŝ �18�

In the latter equations ^ denotes the least squares

solution obtained from Eq. (16) and � denotes the

heat sources location-dependent vector. Using exact
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strength and exact location we have: ~H � Ĥ. Using an

inverse approach, where the location and the strength

of the sources are unknown, the aim is to minimize the

distance between vectors Ĥ and ~H. Vector ~H is cal-

culated using some approximated locations contained

in matrices ~I and ~I0 and the vector of the identi®ed

strengths Ŝ.

An iterative algorithm must be performed to mini-

mize the distance between vector Ĥ and vector ~H. For

location identi®cation, the aim is to ®nd out vectors X

and Y, vectors of the x and y co-ordinates of the sources.

As a result the co-ordinates included in X and Y are

solutions of:

�X ; Y � � argfmin kĤÿ ~Hk2g; �19�

where Ĥ and ~H vectors calculated as speci®ed in Eqs.

(17) and (18).

The proposed method can be decomposed into two

steps, the ®rst one consists in the identi®cation of Ŝ; T̂
and P̂ using some speci®ed locations. The second one is

a ®rst-order approximation of matrices I for location

identi®cation. The two steps are included in an iterative

process. The following sections focus on the iterative

algorithm performed to locate the sources.

2.2. The iterative algorithm for the point heat source

location

In this part of the paper we describe the method used

to solve the non-linear problem (19). The method used is

a Newton method using the ®rst term of the Taylor

development of the Green function. In the second part

of this paragraph we describe the complete procedure

connecting the strength and boundary variables identi-

®cation and the location identi®cation procedures. It has

to be noticed that all the developments presented are

given for the 2D case. The 3D case is similar and it can

be performed readily using the form of T� given in

Eq. (5).

2.2.1. The iterative method

The aim is to ®nd the co-ordinates of the heat sources

using an iterative procedure. As we can see in Eq. (6),

components of matrices ~I and ~I0 are non-linear in xk and

yk , the 2D co-ordinates of line heat source k. In this

section we propose a classical non-linear method to

solve (19), the method is based on the ®rst term of the

Taylor development of coe�cients Ii;k described in Eq.

(6). The strengths gk identi®cation procedure is not in-

cluded in the development. The strengths used in the

®rst-order approximation are found by solving system

(16) at iteration l.

Let us take source k considering boundary node Ci

(or internal point i) of co-ordinates xi and yi, at iteration

l� 1, in the 2D case the ®rst-order term of the Taylor

development can be written

ÿ1

4p
ln �xl�1

k

��
ÿ xi�2 � �yl�1

k ÿ yi�2
��

gl
k

� ÿ1

4p
ln �xl

k

��
ÿ xi�2 � �yl

k ÿ yi�2
��

gl
k

ÿ 1

4p
2�xl

k ÿ xi�
�xl

k ÿ xi�2 � �yl
k ÿ yi�2

gl
kDxl�1

k

ÿ 1

4p
2�yl

k ÿ yi�
�xl

k ÿ xi�2 � �yl
k ÿ yi�2

gl
kDyl�1

k ; �20�

where Dxl�1
k � xl�1

k ÿ xl
k and Dyl�1

k � yl�1
k ÿ yl

k . In Eq.

(20) exponent l denotes, for the concerned variables, the

iteration dependence.

Using a ®rst-order assumption leads to a linear sys-

tem considering heat sources location at iteration l and

Dxl�1
k , Dyl�1

k the errors on source k location at iteration

l� 1. Let us introduce the dimension K vectors DX l�1

and DY l�1 whose components are respectively, Dxl�1
k and

Dyl�1
k . Introducing Eq. (20) for the whole boundary

nodes leads to the linear system

Ĥl ÿ ~Hl � El

E0l

� �
DX l�1 � Dl

D0l

� �
DY l�1; �21�

where Ĥl is the result of matrix operation (17), ~Hl the

vector of calculated heat sources term calculated at it-

eration l (see Eq. (18)), DX l�1 and DY l�1 vectors of

components Dxl�1
k and Dyl�1

k �16 k6K� at iteration

l� 1. Matrices Dl and El are (N, K) dimension matrices,

a result of the ®rst derivative components of Il for each

variable. At iteration l and node Ci, or internal point i,

the source k components of matrices Dl; El are:

�Dl�i;k �
ÿ1

4pk

2 xl
k ÿ xi

ÿ �
xl

k ÿ xi� �2 � yl
k ÿ yi� �2

gl
k ;

�El�i;k �
ÿ1

4pk

2 yl
k ÿ yi

ÿ �
xl

k ÿ xi� �2 � yl
k ÿ yi� �2

gl
k :

�22�

2.2.2. The iterative algorithm

In this section we present the iterative procedure used

to locate the point heat sources. This procedure uses

alternately the least squares estimation of the strengths

vector and the ®rst-order approximation of the error

described in the previous paragraph. The iterative pro-

cedure begins with an a priori (initial) location for each

source.

At iteration l, the ®rst step is the inverse problem

resolution represented by system (16), the strengths are

identi®ed using the locations �xl
k ; y

l
k� �16 k6K�. The

inverse problem resolution is followed by a resolution of

system (21), which is the second step. The new co-ordi-

nates of the sources are calculated such as
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xl�1
k � xl

k � Dxl�1
k ; yl�1

k � yl
k � Dyl�1

k

and used to solve the inverse problem described by Eq.

(16) at iteration l� 1. At the end of the algorithm the

co-ordinates converge on the sources location with the

correct strength. As the inverse problem is unstable

considering the errors on the co-ordinates Dxl�1
k and

Dyl�1
k , the latter are controlled in order to avoid an

intermediate location (xl�1
k ; yl�1

k ) out of the domain.

The direction given by the successive locations at

iterations l and l� 1 is preserved but the maximum

distance covered between two successive locations

(

���������������������������������������
�Dxl�1

k �2 � �Dyl�1
k �2

q
) is imposed at 1/5 of X charac-

teristic dimension. This procedure reduces the excur-

sions of the sources out of the domain, thus the number

of iterations is reduced. Nevertheless if during the iter-

ative process a location is found out of the domain, a

new location is randomly imposed in the domain.

Of course the a priori locations are important in

order to converge as rapidly as possible, i.e. the error

on the co-ordinates has to be reduced. In order to re-

duce the path length of the source from its initial lo-

cation to its ®nal destination, the locations at iteration

l � 0 are chosen at the centre of the di�usive system.

All these locations are slightly di�erent in order to

avoid a singular matrix A. Actually, if all the line

sources are at the same location, the equations consti-

tuting matrix A are degenerated. A consequence is that

all the heat source strengths obtained from system (13)

are identical and the correct co-ordinates cannot be

determined.

The stopping criteria are based on co-ordinates

variations between two iterations, in our examples we

use 0.15 mm: the radius of the experimental sources.

Another stopping criterion can be introduced by calcu-

lating the norm kĤl ÿ ~Hlk at each iteration, the evolu-

tion of this norm is interesting to evaluate the capability

of the process to converge. If kĤl ÿ ~Hlk is constant it

means that the minimum is obtained according to the

proposed method, then the iterative process has to be

stopped. A convergence study is presented in the fol-

lowing section, the algorithm is applied to our exper-

iment using di�erent initial locations.

A third stopping criterion could be introduced by

calculating the norm kTmes ÿ T̂k where vector T̂ contains

the calculated temperatures using the results of the in-

verse problem and a direct BEM approach. These cal-

culated temperatures are compared to the vector of the

measurements Tmes. The use of this criterion imposes the

resolution of the direct problem at each iteration which

is not our aim.

In order to test our approach, rather than a numer-

ical experiment we have chosen to present some exper-

imental results which is the scope of the following

section.

3. A 2D experiment using infrared thermography

The experimental design is a long square bar crossed

in its longest dimension by multiple, in fact six, thin

heating wires (0.3 mm diameter). Each heating wire

represents a point heat source. The proposed exper-

imental set-up is very similar to the set-up proposed in

[4]. The chosen material is cement which leads to a good

resistance to fracture at the temperature reached in our

experiment.

Our approach for solving inverse problems has to be

implemented with the thermal conductivity k because

with this type of material the thermal conductivity k
depends on many factors. A parameter identi®cation is

performed ``in situ'' on the experiment using a particular

set of sensors and the central heating wire.

In the presented examples all the boundary variables,

i.e. heat ¯ux densities and temperatures, are known

along the entire di�usive system boundary. This partic-

ular boundary condition is obtained associating the

measured temperature ®eld with the calculated heat

transfer coe�cient. Thus as vectors T̂ and P̂ are known,

vector Ĥ can be calculated readily using Eq. (17).

Such restrictive boundary conditions are not essential

to solve the inverse problem. Some other boundary

conditions can be applied on a part of the domain, i.e.

Neumann, Fourier or Dirichlet if the measurements are

in a su�cient number to permit the inverse problem

resolution. The measurements can be obtained for in-

stance from internal sensors.

3.1. The experimental design

The experimental design under investigation is a long

square section bar of cement crossed in its longest di-

mension by six KANTHALâ heating wires of 0.3 mm

diameter. In the central section of the bar, the di�usion

system is assumed to be bidimensional. Considering the

heating wires diameter (0.3 mm) compared to the section

of the bar �50� 50 mm2�, the heat generation can be

approximated by a point in a section. The KANTHALâ

wires are heated by Joule e�ect. The current is imposed

by some DC power supplies. If we call L the length of

the heating wire, the imposed strength of the source is:

g � current� voltage=L.

The bar is ®xed vertically on a rotating deck screwed

onto an optical bench (cf. Fig. 1). The infrared scanner,

an AGEMAâ 880 LW, is placed on the same bench.

This system permits to scan each boundary without

changing the focus by rotating the deck. All the surfaces

are painted in black. The black paint emissivity e is 0.95,

in the wavelength range of the scanner: 8±12 lm.

In the section under investigation two sensors can be

found at the positions displayed in Fig. 2. The two

sensors tc1 and tc2 are placed at 10 mm from the central

source g6. They are used to identify the heat conduc-

1430 C. Le Niliot, F. Lef �evre / International Journal of Heat and Mass Transfer 44 (2001) 1425±1438



tivity of the material using a method similar to the two-

linear probe method proposed in [11].

The surface temperature is measured using an infra-

red scanner AGEMAâ 880 LW. The infrared pictures

constituted of 270� 270 pixels (picture elements) are

hard disc-recorded using software ADDELIEÓ (AD-

DITIONNAL TECHNOLOGIES). In the steady case,

100 pictures are averaged in order to decrease the

measurement errors. Using a calibration equation it is

possible to obtain the surface temperature. The infrared

scanner is calibrated at the laboratory using the proce-

dures described in [12]. In the range 30±120°C, using the

calibration equation leads to the largest error of 0.08 K,

a null mean error and a standard deviation of 0.06 K.

In the obtained infrared picture used as a data-®le it

is necessary to extract 25 values representing the 25

boundary elements over each side of the bar. To obtain

this information from the picture we use a quadratic

interpolation over the concerned pixels and the average

temperature is then calculated at the middle of the ele-

ment.

The section at z � 180 mm is our 2D di�usive system,

this section is described in Fig. 2. In the latter we ®nd six

di�erent sources, from g1 to g6, and two thermocouple

junctions. The six heating wires are independent and can

be activated separately with di�erent currents. A maxi-

mum of four heating wires are activated at the same

time.

3.2. The experimental inverse problem

In this paragraph we present the boundary con-

ditions associated with the measurements used to solve

Fig. 1. The experimental set-up scheme.

Fig. 2. Sensors location and boundary conditions in the studied

section.
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the inverse problem. The 2D section under investigation

is discretized in 100 BEM linear elements. The inverse

problem consists in identifying each activated heat

source location and the associated strength. To cope

with this problem we use the following boundary con-

ditions:

· C1±C4: known temperatures (measurements from in-

frared thermography).

· C1±C4: known heat ¯ux density.

The heat ¯ux densities over the scanned surfaces are

obtained as the sum of radiant and convective losses.

For the radiant heat ¯ux density we have:

ur � er�T 4
r ÿ T 4

i � with Tr the radiant ambient tempera-

ture in Kelvin and Ti the measured temperature at ele-

ment Ci of the scanned boundary. For the convective

heat transfer coe�cient hc we use the local relations

along z axis proposed in [13] for a vertical cylinder in

calm air. This correlation is used considering an average

temperature along s but as a function of z because of the

vertical position of the bar. In Figs. 3 and 4, we present

some results obtained for an intensity of 40 W mÿ1 on

g6, a radiant ambient temperature of 25°C and an air

temperature of 25°C. In Fig. 3, we show the average

boundary temperature function of z. As we can see on

this chart the average boundary temperature is a func-

tion of z. The studied section is situated at z � 0:18 m, in

this region the temperature variations are smooth and a

linear approximation leads to a gradient of 7°C/m.

Using the average temperature function of z Tz, it is

possible to obtain a measured heat transfer coe�cient by

convection. The latter is obtained using the following

equation:

hc�z� � uÿP25
i�1 er�T 4

r ÿ T 4
i �

�T1 ÿ Tz� ; �23�

where Tz is the average side temperature along z; u the

average heat ¯ux density imposed by the central heating

wire g6 (here 200 W mÿ2), and Ti the temperature

measured on element Ki; 16 i6 25 on one side.

In Fig. 4 we have plotted the measured convection

heat transfer coe�cient and the one obtained using the

correlation. We obtain some satisfactory results between

z � 0:1 m and z � 0:2 m. In the studied section we ob-

tain 3.56 W mÿ2 Kÿ1 for the measured coe�cient and

3.31 W mÿ2 Kÿ1 for the calculated coe�cient using the

correlation. This corresponds to an error of 7.5% on the

calculated heat ¯ux density by convection (65.6 W mÿ2).

Let us remind that the total heat ¯ux density here is of

200 W mÿ2. Including the radiant ¯ux density we obtain

for this particular case a value for the calculated heat

¯ux density of 194.9 W mÿ2 which represents a total

deviation of 2.6%. A sensitivity study on the calculated

convection heat transfer coe�cient is given in the fol-

lowing sections.

In the latter the heat ¯ux densities obtained using the

measured temperature pro®le along the studied section

is calculated for each element. A local relation is used for

the radiant heat ¯ux density and the calculated coef-

®cient hc(z) is applied on each element. Including radiant

and convective losses, the measured heat ¯ux density ui

at boundary element Ci associated with the measured

temperature Ti is given by the relation:

ui � er�T 4
r ÿ T 4

i � � hc�z��T1 ÿ Ti�; �24�Fig. 3. Mean boundary temperature evolution along z for

steady state, g6 � 40 W mÿ1, h1 � 25°C.

Fig. 4. Convective heat transfer coe�cient hc on the scanned

boundary, calculated and measured.
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where hc(z) is the convective heat transfer coe�cient in

W mÿ2 °Cÿ1 evaluated at z � 0:18 m using the average

boundary temperature at the studied section.

The thermal pro®le displayed in Fig. 3 shows that

due to a variation of the heat transfer coe�cient along z

axis the di�usive system is not strictly 2D. Considering

the temperature function of z around the studied section

from z � 0:1 m to z � 0:2 m, a linear approximation

leads to a gradient of: oT=oz � 7°C=m. This gradient is

the same at the surface and inside the bar, this last as-

sumption has been veri®ed through direct simulations.

The minimum value of oT=on calculated by direct sim-

ulations is around )264°C/m, it can be along x or y

depending on the considered area. The maximum ratio

between the gradients in the plan �x; y� and the gradient

along z is 2.6%. This low value can justify a 2D ap-

proximation.

3.3. The experimental results

This paragraph presents some results obtained for

the square bar, in most examples we use the exact

number of sources activated but for some examples we

will consider more or less heat sources than really acti-

vated. For these cases the solution can be not unique

depending on the initial position. The results are dis-

played in tables giving the expected and identi®ed values

with some additional information as:

· the value of the Euclidean norm kĤÿ ~Hk in °C;

· the value of the standard deviation

r�h� �

������������������������������������������������������������PN
i�1 hi;measured ÿ ĥi;calculated

� �2

N

vuut
in °C:

Norm kĤÿ ~Hk represents the distance between the heat

source term modellized (cf. Eq. (18)) and the least

squares estimation of H (cf. Eq. (17)). r�h� is the stan-

dard deviation between the results of a direct problem

and the measured temperatures. These two criteria are

interesting to compare the di�erent results. As it is

mentioned in Section 2, kĤÿ ~Hk is calculated during

the iterative process which is not the case with r�h�, a

result of the comparison between the measured tem-

peratures and the calculated temperatures. The latter are

obtained from the resolution of a direct problem using

the identi®ed locations and strengths.

3.3.1. The number of sources is correct

The ®rst example concerns a single source activated,

in Table 1 we present three di�erent identi®cations

corresponding to three sources activated separately

with a strength of 40 W mÿ1. The presented results

are the errors Dx and Dy, respectively on the x and y

co-ordinates. They are calculated such as Dx � xexperimental

ÿxidentified. Parameter d, given in mm, is the distance

between the identi®ed and experimental source

(d � ���������������������
Dx2 � Dy2

p
). As we can see in Table 1 the location

identi®cation is accurate with a maximum distance

between the identi®ed and experimental source of 1.1

mm. The results are also good for the strength identi®-

cation, the maximum deviation is )1.4 W mÿ1: 3.5% of

the experimental strength. These satisfactory results

show that the model is relevant concerning the heat ¯ux

density ®eld associated with the measured temperature

®eld on the scanned surface.

In Table 2 we present the results obtained for some

cases where two sources are simultaneously activated.

As for the single source the results can be considered

satisfactory, nevertheless the location error d is now

of 1.6 mm compared to the 1.1 mm of the previous

examples. The error on the strength is raised to 8.9%

on g3 intensity. With two sources at 30 W mÿ1 the

surface temperature increases and the assumption of a

global convective heat transfer coe�cient might not be

valid.

For the last example of this section we propose to

identify simultaneously four di�erent sources, the four

sources located at the four corners. The four intensities

are di�erent from 10 to 40 W mÿ1. This case is di�cult

because the sensitivity to the position is very low with a

strength of 10 W mÿ1. The results of the identi®cation

are presented in Table 3. These results are good when

the strength of the concerned source is over 20 W mÿ1

which is not the case with g1. Even with this poor esti-

mation of g1 the other sources are well identi®ed. The

value of the standard deviation r�h� is 0.22°C and as we

can see in Fig. 5 the temperature pro®les, measured and

calculated, are very close. The main di�erences are noted

at the boundaries of each side, at curvilinear abscissa s

equal to 0.05, 0.1, 0.15 and 0.2 m. This lack of accuracy

Table 1

Results of three identi®cations involving a single source: g1, g2 or g6

Source Strength g
(W mÿ1)

d (mm) Dx (mm) Dy (mm) Dg (W mÿ1) kĤÿ ~Hk �°C� r�h� �°C�

g1 40 1.1 0.9 0.7 )0.9 0.74 0.14

g2 40 0.6 )0.5 0.4 )1.1 0.95 0.14

g6 40 0.3 )0.3 0.1 )1.4 0.78 0.15
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is a consequence of an imperfect focus of the infrared

scanner around the boundaries of the scanned object.

3.3.2. In¯uence of the initial location

Through an example we propose to examine the

in¯uence of the initial location on the results of the

identi®cation procedure. Let us examine the above-

mentioned case with sources g3 and g5 activated. The

previous identi®cation has been performed using the

initial locations at the centre of the bar, at two di�erent

locations at 0.1 mm of the centre. The results after four

iterations are given in Table 2. In order to test the

stability of the results to initial locations the path cov-

ered by the identi®ed locations during the iterative

process is recorded. The results are displayed in Fig. 6

for four di�erent initial locations: at the corners, at the

centre ... The number of iterations necessary to respect

the stopping criterion is given in each ®gure. The stop-

ping criterion here is of 0.15 mm which corresponds to

the radius of the heating wires. All the obtained ®nal

locations are the same within 0.1 mm. The path followed

by the sources is continuous for cases (a)±(c) with an

iteration number inferior to six. The path followed by

the sources in case (d) is not continuous like the others

and the number of iterations necessary to converge is

higher (11 iterations). This can be explained by an ill

conditioned resolution matrix due to the location of

both sources at the centre of the bar. At this point of the

process if the space step between two iterations is not

controlled the point sources would be located out of the

domain. The same comment can be made for the

example displayed in Fig. 6(a) at the beginning of the

iterative process.

In Fig. 7, we present the variation of the Euclidean

norm during the iterative process performed in case (c)

described in Fig. 6. As we can see, the shape of the

function is continuous by decreasing, which validates the

iterative method in this particular case.

Concerning the above-mentioned examples, the re-

sults obtained are not a function of the initial locations.

The same results are obtained within the stopping cri-

terion (here 0.15 mm) whatever the chosen initial loca-

tions. This is not the case when the number of activated

sources is not correct. An other parameter is important

for a correct strength identi®cation: the calculated heat

transfer coe�cient.

Table 2

Results of two identi®cations involving two sources: (g1, g3) or (g3, g5)

Source Strength g (W mÿ1) d (mm) Dx (mm) Dy (mm) Dg (W mÿ1) kĤÿ ~Hk �°C� r�h� �°C�
Identi®cation of g3 and g5

g1 30 0.3 0.3 0.1 )0.4 1.02 0.18

g3 30 1.6 1.6 0 )2.7

Identi®cation of g3 and g5

g3 30 0.8 0.8 )0.2 )2.4 1.06 0.17

g5 40 1.1 0.6 )0.9 )1.8

Table 3

Results of an identi®cation involving four sources: g1, g3, g4 and g5

Source Strength g
(W mÿ1)

d (mm) Dx (mm) Dy (mm) Dg (W mÿ1) kĤÿ ~Hk �°C� r�h� �°C�

g1 10 3.5 )0.6 )3.5 0.0 1.58 0.22

g3 20 1.9 1.9 0.3 2.3

g4 30 1.4 0.1 1.4 )3.5

g5 40 0.4 )0.4 )0.1 )1.4

Fig. 5. Temperatures (°C) measured and calculated at the

scanned surface using the results given in Table 3 with the four

identi®ed sources.
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3.3.3. In¯uence of the calculated convective heat transfer

coe�cient

In this section, we propose to study the sensitivity of

the result to convective heat transfer coe�cient hc. Let

us consider the four activated sources example presented

in Table 3. In the latter the results are obtained with the

calculated value: hc � 4:0 W mÿ2 Kÿ1. Let us perform an

identi®cation with heat transfer coe�cient hc � 10%; the

results are given in Table 4.

In this table we can see that a variation of 10% on the

calculated heat transfer coe�cient hc does not lead to a

variation of 10% on the error. Compared to the results

given in Table 3, the identi®ed value of the source is

increased, or decreased, of about 8% in the worse case

(g1). A deviation of 2% is observed in the best case (g5).

About the total energy reconstruction we have a sum of

the errors Dg equal to )6.0 W mÿ1 for hc ÿ 10% and

�0.8 W mÿ1 for hc � 10%. These values represent, re-

spectively, )6% and 0.8% of the total strength imposed

by the four sources. These results let appear a bias on the

e�ective value of calculated coe�cient hc, but in a sat-

isfactory range especially for location identi®cation.

This is the cost for using measured boundary variables

only and particularly measured heat ¯ux densities

through a calculated heat transfer coe�cient.

In the next paragraph we examine the case of an

unknown number of sources, in this case we try to

Fig. 7. g3 and g5 co-ordinates and kĤÿ ~Hk (norm) versus the

iteration number, during the iterative process with initial loca-

tions g3(49;1) and g5(1;49).

Fig. 6. Path followed by the searched heat sources (g3 and g5) during the iterative process for di�erent initial locations:

(a) g3(25.1;24.9) g5(24.9;25.1), (b) g3(1;25) g5(49;25), (c) g3(49;1) g5(1;49) and (d) g3(1;1) g5(49;49).
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identify more or less sources than present in the domain,

which can lead to not unique solutions depending on the

a priori locations used to initialise the iterative process.

3.3.4. The number of heat sources is unknown

In this paragraph, we present some identi®cation

results for the case where the number of point heat

sources is unknown which can lead to declare more or

less sources than expected. The results are presented

using a scheme of the studied section. The plain symbols

(d and j) correspond to the real sources, the white

symbols (s and �) correspond to the identi®ed sources.

The intensities are indicated in (W mÿ1) and are rep-

resented between brackets beside each concerned source.

When an identi®ed source is not close enough to a real

source it is indicated by symbol ``+''.

In Fig. 8 we have represented the results for one

source activated and four declared. As we can see, the

result of the identi®cation corresponds to the result of

Table 2 for one source declared. Indeed, one of the de-

clared sources corresponds to the real source g2 with a

similar strength and a similar location, the strength of

the three others is nearly equal to zero.

In Figs. 9±11 we present the cases of sources g1 and

g3 activated using a number of declared sources, di�er-

ent for two. In Fig. 9, only one source is declared. As it

could be predicted, at the end of the iterative process,

the identi®ed source takes place between g1 and g3. The

found intensity is very close to the sum of the intensities

of g1 and g3. The proposed number of sources can be

eliminated considering the value of the standard devia-

tion (1.9°C) or the value of the Euclidean norm (9.2°C).

The latter are ten times higher than those calculated in

the case where two or more sources are declared.

In Figs. 10 and 11 we show the same case with re-

spectively, 3 and 4 sources declared. The results are

similar to the example presented in Fig. 8. Two of the
Fig. 8. One source activated g2, four declared, kĤÿ ~Hk �
0:86°C, r�h� � 0:11°C:

Fig. 9. Two sources activated, g1 and g3, one declared,

kĤÿ ~Hk � 9:19°C, r�h� � 1:93°C.

Fig. 10. Two sources activated, g1 and g3, three declared,

kĤÿ ~Hk � 0:84°C, r�h� � 0:15°C.

Table 4

Results of identi®cations involving four sources: g1, g3, g4 and g5 with the calculated convective heat transfer coe�cient hc � 10%

Source Strength g (W mÿ1) Distance d (mm) Dg (W mÿ1)

hc ÿ 10% hc � 10% hc ÿ 10% hc � 10%

g1 10 3.6 3.5 )0.7 0.8

g3 20 1.9 1.9 1.5 3.1

g4 30 1.3 1.4 )4.5 )2.6

g5 40 0.4 0.4 )2.3 )0.5
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declared sources correspond to the real sources g1 and

g3, the strength of the others, indicated by symbol ``+'',

are at least 10 times smaller than these ones. The values

of standard deviation and Euclidean norms are of the

same order of magnitude as those calculated when two

sources are declared (see Table 3). These values are a

little smaller when the number of declared sources is

more important, which can be explained considering

that the supplementary sources, with a very low inten-

sity, adjust to the measurements and modelling errors.

The results presented in Figs. 12 and 13 show two

di�erent solutions of the identi®cation problem of two

sources g3 and g5 when four sources are declared. These

results are obtained using di�erent initial conditions; at

the four corners for the results displayed in Fig. 12 and

in the centre for the results displayed in Fig. 13. As we

can see on these ®gures the location identi®cation of g3

is very accurate in the two cases with a maximum de-

viation of 0.8 mm. This is not the case with g5 identi®-

cation. In Fig. 12 three sources are around g5 within a

distance d of 8.7 mm. The sum of their intensities is

equal to 40.9 W mÿ1, which is close to the real value of

g5 (40 W mÿ1). The results presented in Fig. 13 are

similar to those presented in Fig. 11, with two sources

close to g3 and g5 and the others with a small strength.

The values of standard deviation and Euclidean norms

obtained with the two solutions are of the same order of

magnitude. In this case, the correct solution cannot be

determined and the use of one or more thermocouples

would be necessary to eliminate the wrong solution.

4. Conclusion

In this paper, we have presented our approach for

multiple-point heat sources identi®cation in the steady

case. The results of the method combining the location

and strength identi®cation are satisfactory considering

the presented experimental results. These results ob-

tained on a 2D di�usive system show that a set of point

heat sources can be identi®ed by using infrared ther-

mography only, without any thermocouple. The tran-

sient case can be treated using a similar approach, with

for example the identi®cation of sources moving in space

during the experiment.
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